The dirt on Australia's LNG trade ... Natural gas is a much ‘dirtier’ energy source than we thought

Squire

Active member
Because of the 90x effect of methane v CO2 as a greenhouse gas, it takes only 1% leakage of methane production to make the whole process dirtier than coal. However, the industry is currently leaking at twice that rate, 2%. Some say its even very much higher than 2%.

Will Australia eventually be caught with gas in the ground that nobody wants to buy? and coal in the ground that nobody wants to buy?

https://www.nationalgeographic.com/...hane-in-atmosphere-oil-gas-drilling-ice-cores

Natural gas is a much ‘dirtier’ energy source than we thought
Coal, oil, and gas are responsible for much more atmospheric methane, the super-potent warming gas, than previously known.

BYALEJANDRA BORUNDA
PUBLISHED FEBRUARY 19, 2020
• 10 MIN READ

In the thick of a Greenland summer of field work in 2015, Benjamin Hmiel and his team drilled into the massive ice sheet’s frozen innards, periodically hauling up a motorcycle-engine-sized chunk of crystalline ice. The ice held part of the answer to a question that had vexed scientists for years: How much of the methane in the atmosphere, one of the most potent sources of global warming, comes from the oil and gas industry?

Previously, geologic sources like volcanic seeps and gassy mud pots were thought to spit out about 10 percent of the methane that ended up in the atmosphere each year. But new research, published this week in Nature, suggests that natural geologic sources make up a much smaller fraction of the methane in today’s atmosphere. Instead, the researchers say, that methane is most likely attributable to industry. Added up, the results indicate we’ve underestimated the methane impacts of fossil fuel extraction by up to 40 percent.

That’s both bad news for climate change and good, says Hmiel, the lead author of the study and a researcher at the University of Rochester. Bad, because it means that oil and gas production has had a messier, bigger impact on the greenhouse gas budget than scientists knew. But Hmiel finds the result encouraging for almost the same reason: The more of the methane emissions that can be pinpointed to human activity like oil and gas extraction, the more control it means policymakers, businesses, and regulators have to fix the problem.

“If we think of the total methane in the atmosphere as slices of a pie—one slice is from ruminants, this other is from wetlands. The slice is we used to think was from geologic methane was too big,” says Hmiel. “So what we’re saying is that the fossil fuel pie slice is larger than what we thought, and we can have a bigger influence on the size of the slice, because it’s something we can control.”

Methane, the “bridge” fuel—but a bridge to where?
A potent greenhouse gas, methane’s carbon core and hydrogen arms are arranged in a configuration that makes it exceptional at absorbing heat. On a 20-year timescale, a methane molecule is roughly 90 times more effective at trapping heat in the atmosphere than a molecule of carbon dioxide, the greenhouse gas that wields the most control over Earth’s future warming in the long-term.

Methane’s atmospheric concentrations have increased by at least 150 percent since the Industrial Revolution. Because of its potency, the more of it there is in the air the harder it will be to keep the planet’s temperatures from soaring past global climate goals.

Methane is also the protagonist in a planet-wide, decades-long scientific mystery: Where, exactly, does all the extra methane heating up the atmosphere today all come from? Is it cow burps or rice paddies? Leaks from oil and gas production? Burbling gassy mud volcanoes or seeps along the Earths shifting seams?

Over the past few decades, as calls to reduce carbon dioxide emissions have grown louder and natural gas collection technologies like fracking have gotten cheaper, many coal-fired power plants across the United States and abroad have retired. In the U.S. over 500 coal-fired power plants have closed since 2010. In many cases they are replaced by natural gas (which is made up primarily of methane gas) plants, which now produce nearly 40 percent of the U.S.’s energy needs.

Methane burns more efficiently than coal, making it a better option, carbon-cost-wise and air-pollution-wise, than coal. It also sticks around in the atmosphere for much less time than CO2—an average of nine years, compared to CO2’s hundreds.

Because of its characteristics, natural gas has been often been touted as a “bridge fuel” to help smooth the transition to a carbon-neutral energy future. Natural gas plants fill energy needs today while renewable or carbon-negative technologies develop.

“The question is: Is this a bridge fuel, or is it going to be around for a very long time?” says Sheila Olmstead, an environmental economist at the University of Texas at Austin. “The market is telling us it’s probably going to be around for a long time.”

However, the climate cost of natural gas has relied on a basic assumption: There are less total carbon emissions from natural gas than from other sources. But in recent years a flotilla of scientific studies have brought that assumption into question, primarily by looking at how much gas is lost during the production process.


If there are very few leaks or losses along the way—less than a few percent of the total amount of gas recovered—the math breaks even or comes out ahead. But if that “leakage rate” climbs over more than about 1 percent of the total gas recovered, the budget gets fuzzy, says Robert Howarth, a climate scientist at Cornell.

One recent study found that the widely used “leakage rate” of gas in the U.S. natural gas production process could be over 2 percent. Others, looking at specific “super emitters” in major drilling regions of the US, have found even more leakage.

“Over the past few years of research I’d say the whole argument for methane for a bridge fuel is really gone,” says Howarth. “But if we go back and say we really do need natural gas for a while, that calculation depends on methane’s break-even point. And we’re not sure we’re close to that.”

It’s critical to phase out CO2 emissions, stresses Jessika Trancik, an energy expert at MIT, because that’s the stuff that will keep the planet locked in for long-term warming. But for the climate goals the world is scrambling to hit right now—keeping air temperatures from soaring the 3.6 degrees Fahrenheit (2 degrees Celsius) temperature goals from the 2015 Paris Agreement—it’s also critical to keep any extra methane from leaking into the atmosphere.

“It’s impossible to hit those climate targets with methane in the mix,” says Lena Höglund Isaksson, a greenhouse gas expert at Austria’s International Institute for Applied Systems Analysis. ...
 

HBS Guy

Head Honcho 💉💉
Staff member
It is possible and a decent government would work so that when that day arrives other industries exist to employ the people working in natural gas extraction/shipping.

Not this current mob, can only think to go on mining and exporting coal and gas when clearly those days are ending. Hear them howl when our exports get hit with green tariffs yet we KNOW those are coming.
 
Top